$$
\begin{aligned}
& \text { STRARS } \\
& \text { STREET } \\
& R A \mathbb{R} \mathbb{R} W A Y \\
& \mathbb{C U R V E S}
\end{aligned}
$$

Frog and Switch Dept.

$$
\text { JAN } 81008
$$

git

SPIRALS

for
Street Railway Curves and Easement Curves for

Street Railway Branch-Offs

Complete Formulas and Tables 0

The Pennsylvania Steel Company Steelton, Pa .

FROG AND SWITCH DEPARTMENT

Copyright 1906 by The Pennsylvania Steel Company, Steelton, Pa.

4 THE PENNSYLVANLA STEEL COMPANY

LIST OF OFFICES

of

The Pennsylvania Steel Company

GENERAL SALES OFFICE

Philadelphia, Pa., Girard Trust Building

Cable Address, Pennsteel, Philadelphia. (Use Lieber's Code.)
Baltimore, Md. . . Continental Trust Building Boston, Mass. 70 Kilby Street Chicago, Ill. Western Union Building London, Eng. 110 Cannon Street, E. C. Mexico, Mex. . . . 76 Calle de Cinco de Mayo New York City, N. Y. 71 Broadway Philadelphia, Pa. . . . Girard Trust Building San Francisco, Cai 1505 Chronicle Building. -29 Golden Gate A vile St. Louis, Mo. . Commonwealth Trust Building Steelton, Pa. Works

HE Spiral System presented in the following pages has been in use by The Pennsylvania Steel Company for the last decade, and has given general satisfaction. It consists of a transition formed of arcs of diminishing radii, and is calculated upon the center line of track, since that is substantially the path followed by the center of gravity of the cars. The purpose of a spiral ending on a short radius street railway curve is not as in steam railroad practice, to enable the super-elevation of the outer rail of curve to be gradually attained, but to reduce the shock due to the change in direction of the car. The switch easements are so designed that a plain curve can be converted
into a branch-off with the minimum disturbance of existing work while retaining standard switches and mates, and some simplification of computation is also obtained. The solutions of the various problems given present sufficient information to enable any data required for the laying out or construction of track to be readily secured.

Problem 1. To select a spiral.
(a) The radius of the main curve must be less than the preceding branch of the spiral, must be more than the next branch would be were it produced, and should nearly equal the latter.
(b) The longer the spiral, the easier the entrance will be. But bear in mind that the main body of the curve should be circular, the spiral simply acting as an entrance to it.
(c) A spiral of less than three branches should not be used.

Problem 2. Given: A circular curve with symmetrical spirals, to find the tangent and external distances.

$$
\begin{aligned}
& \mathrm{O} G=\mathrm{R}+\mathrm{X} \text {-versine } \mathrm{S}^{\circ} \mathrm{R} \text {; } \\
& \mathrm{GS}=\mathrm{Y}-\operatorname{sine} \mathrm{S}^{\circ} \mathrm{R} ;
\end{aligned}
$$

Tangent distance $=0 \mathrm{G} \tan 1 / 2 \Delta+G \mathrm{~S}$;
External distance $=O \mathrm{G}$ ex $\sec 1 / 2 \Delta+X-$ versine S° R.

Problem 3
Problem 3. Given: The tangent distance V S, the intersection angle Δ, and the desired length of spiral, to find the radius of the curve. Approximate $\mathrm{R}=$ cotangent $1 / 2 \Delta$ (V S $-1 / 2$ length of spiral). Having selected a spiral by this radius, the exact radius may be found, if required, by the following formula:

$$
\mathrm{R}=\frac{\cos 1 / 2 \Delta(\mathrm{~V} \mathrm{~S}-\mathrm{Y}-\mathrm{X} \tan 1 / 2 \Delta)}{\operatorname{sine}(1 / 2 \Delta-\mathrm{S})} .
$$

Caution-If the result is enough different from the original radius to require a change in the spiral by Problem 1, a second trial must be made.

Problem 4. Given: The intersection angle \triangle
and the external distance V H , to find the radius. Approximate to the radius by finding that for a simple curve passing through the point H , and select a spiral for a radius somewhat smaller.

$$
\text { Then } \mathrm{R}=\frac{\mathrm{VH} \cos 1 / 2 \Delta-X}{\cos \mathrm{~S}^{\circ}-\cos 1 / 2 \Delta} \text { (Searle). }
$$

Caution-If the result is enough different from the original radius to require a change in the spiral by Problem 1, a second trial must be made.

Problems 5 and 6
Problem 5. Given: The X and Y for any point on the spiral; to find the deflection from the tangent at the point of spiral.

Tangent deflection angle $=\frac{X}{\bar{Y}}$.
Problem 6. Given: The X and Y for any point on the spiral, to find the long chord.

$$
\text { (a) Long chord }=\frac{Y}{\text { cosine def angle }}
$$

or (b) Long chord $=\sqrt{\mathrm{X}^{2}+\mathrm{Y}^{2}}$.
Problem 7. Given: X and Y for a point on the spiral,- to find X^{\prime} and Y^{\prime} on a line parallel to the spiral, and offset the distance $\mathrm{S} \mathrm{S}^{\prime}$ inside the spiral.

$$
\begin{aligned}
& \mathrm{X}^{\prime}=\mathrm{X}-\mathrm{S} \text { S } \mathrm{S}^{\prime} \text { versine } \mathrm{S}^{\circ} ; \\
& \mathrm{Y}^{\prime}=\mathrm{Y}-\mathrm{S} \mathrm{~S}^{\prime} \text { sine } \mathrm{S}^{\circ} .
\end{aligned}
$$

Note-Problems 5 and 6 can then be applied to X^{\prime} and Y^{\prime} if it is desired to use deflection angles to lay out the curve.

Problem 7
As these curves will almost invariably be laid out on an offset varying with the gage of the road, the deflections are not figured in the table.

tangent to the circular curve, from which the latter may be laid out in the usual manner.
$\mathrm{V} H=$ see Problem $2 ;$
$\mathrm{V}^{\prime} \mathrm{H}=\mathrm{R}$ ex secant $(1 / 2 \Delta-\mathrm{S}) ;$
$\mathrm{V}^{\prime}=\mathrm{V} H-\mathrm{V}^{\prime} \mathrm{H}$.

Problem 9
Problem 9. General solution for unsymmetrical curves.
$O G=R+X-R$ versine S°;
-G $\mathrm{S}=\mathrm{Y}-\mathrm{R}$ sine S°;
$O G^{\prime}=R+X^{\prime}-R$ versine S°;
G $\mathrm{S}^{\prime}=\mathrm{Y}-\mathrm{R}$ sine $\mathrm{S}^{\circ \prime}$;
$\mathrm{V} \mathrm{S}=\tan 1 / 2 \Delta \mathrm{OG}+\mathrm{GS}+\frac{\mathrm{OG}^{\prime}-\mathrm{OG}_{\mathrm{G}}}{\operatorname{sine} \Delta} ;$
$V S^{\prime}=\tan 1 / 2 \Delta O G+G^{\prime} S^{\prime} \pm \frac{O G^{\prime}-O G}{\tan \Delta}$.

Note - \pm in above; + if Δ is more than 90°, and - if Δ is less than 90°.

$$
\begin{aligned}
\Delta^{\prime} & =\Delta-\left(\mathrm{S}^{\circ}+\mathrm{S}^{\circ \prime}\right) ; \\
\mathrm{V}^{\prime} \mathrm{L} \text { or } \mathrm{V}^{\prime} \mathrm{L}^{\prime} & =\tan \mathrm{V}^{\prime / 2} \Delta^{\prime} \mathrm{R} ; \\
\mathrm{V}^{\prime} \mathrm{B} & =\mathrm{X}+\mathrm{V}^{\prime} \mathrm{L} \text { sine } \mathrm{S}^{\circ} ; \\
\mathrm{V} \mathrm{~B} & =\mathrm{V} \mathrm{~S}-\left(\mathrm{Y}+\mathrm{V}^{\prime} \mathrm{L}-\mathrm{V}^{\prime} \mathrm{L} \text { versine } \mathrm{S}^{\circ}\right) ; \\
\tan \mathrm{C} & =\frac{\mathrm{V}^{\prime} \mathrm{B}}{\mathrm{VB}} \\
\mathrm{~V} \mathrm{~V}^{\prime} & =\frac{\mathrm{V} \mathrm{~B}}{\operatorname{cosine}} \text { if } \mathrm{C}=45^{\circ}-; \\
\mathrm{V} \mathrm{~V}^{\prime} & =\frac{\mathrm{V}^{\prime} \mathrm{B}}{\operatorname{sine} \mathrm{C}} \text { if } \mathrm{C}=45^{\circ}+.
\end{aligned}
$$

Problem 10

Problem 10. Given: The middle ordinate for a chord of length $a b$ for R and R^{\prime}, to find the middle ordinate at the P C C. From the figure it is evident that $\mathrm{d}^{\prime} \mathrm{c}^{\prime}$ bisects $\mathrm{c} d$.

$$
\therefore e f=\frac{c f+d f}{2}
$$

Therefore, the middle ordinate at any P C C in the spiral equals one-half the sum of the middle ordinates for the radii on each side for the same chord.

Problem 11
Problem 11. Given: That portion of a spiral with equal chords $\mathrm{L}, \mathrm{L}^{\prime}$ and $\mathrm{L}^{\prime \prime}$ and angles $a-b, a$, and $a+b$, to find the middle ordinate at the center of the chord L in the length $\mathrm{D}^{\prime} \mathrm{C}^{\prime}$.

$$
\mathrm{CF}=\mathrm{C}^{\prime} \mathrm{A} \text { and } \mathrm{DF}=\mathrm{D}^{\prime} \mathrm{B}
$$

From the figure it is evident that $\mathrm{D}^{\prime} \mathrm{C}^{\prime}$ bisects C D.

$$
\therefore \mathrm{E} \mathrm{~F}=\frac{\mathrm{C} \mathrm{~F}+\mathrm{D} \mathrm{~F}}{2}
$$

Then $\mathrm{C}^{\prime} \mathrm{A}=1 / 2 \mathrm{~L} \tan 1 / 4 a+\mathrm{L}^{\prime}$ sine $\left(1 / 2 a+\frac{a+b}{2}\right)$;

$$
\mathrm{D}^{\prime} \mathrm{B}=1 / 2 \mathrm{~L} \tan 1 / 4 a+\mathrm{L}^{\prime \prime} \text { sine }\left(1 / 2 a+\frac{a-b}{2}\right)
$$

and since the sines of small angles are proportional to the angles,

$$
\frac{\mathrm{C} \mathrm{~F}+\mathrm{D} \mathrm{~F}}{2}=\mathrm{E} \mathrm{~F}=1 / 2 \mathrm{~L} \tan 1 / 4 a+\mathrm{L} \text { sine } a .
$$

But this last equation equals the middle ordinate in the length $A B$ for the radius of the central arc; and since the increment to the angle b would be equal if L^{\prime} and $L^{\prime \prime}$ were equal, the middle ordinate at the center of any arc of the spiral, for any length of chord, is equal to the middle ordinate of the radius of that are in the same length.

Standard Spirals.

The Pennsylvania Steel Co.

Center Line Data.

SPIRAL No. 2

Rad.	Angle	X	Y	S°	Versine	Sine
300	$0^{\circ}-30^{\prime}$	0.011	2.618	$0^{\circ}-30^{\prime}$.00004	.00873
150	$1^{\circ}-00^{\prime}$	0.057	5.235	$1^{\circ}-0^{\circ}$.00034	.02618
100	$1^{\circ}-30^{\prime}$	0.160	7.851	$3^{\circ}-00^{\prime}$.00137	.05234
75	$2^{\circ}-00^{\prime}$	0.342	10.463	$5^{\circ}-00^{\prime}$.00381	.08716
60	$2^{\circ}-30^{\prime}$	0.627	13.065	$7^{\circ}-30^{\prime}$.00856	.13053
50	$3^{\circ}-00^{\prime}$	1.036	15.651	$10^{\circ}-30^{\prime}$.01675	.18224
$421 / 2$	$3^{\circ}-30^{\prime}$	1.587	18.187	$14^{\circ}-00^{\prime}$.02970	.24192
$37 / 2$	$4^{\circ}-00^{\prime}$	2.309	20.703	$18^{\circ}-00^{\prime}$.04894	.30902

SWITCH EASEMENT S 2-75

Rad.	Angle	X	Y	S°	This Ease- ment gives an
	75	$7^{\circ}-50^{\prime}$	0.700	10.222	$7^{\circ}-50^{\prime}$
O G equal to					

SPIRAL No. $2^{1 ⁄ 2}$

Rad.	Angle	X	Y	So	Versine	Sine
444	$0^{\circ}-20^{\prime}$	0.007	2.583	$0^{\circ}-20^{\prime}$. 00002	. 00582
222	$0^{\circ}-40^{\prime}$	0.038	5.166	$1^{\circ}-00^{\prime}$	00015	01745
148	$1^{\circ}-00^{\prime}$	0.105	7.748	$2^{\circ}-00^{\prime}$. 00061	03490
111	$1^{\circ}-20^{\prime}$	0.226	10.328	$3{ }^{\circ}-20^{\prime}$. 00169	05814
89	$1^{\circ}-40^{\prime}$	0.414	12.910	$5^{\circ}-00^{\prime}$	00381	. 08716
74	$2^{\circ}-00^{\prime}$	0.684	15.478	$7{ }^{\circ}-00^{\prime}$. 00745	12187
$631 / 2$	$2^{\circ}-20^{\prime}$	1.051	18.038	$9^{\circ}-20^{\prime}$. 01324	16218
$551 / 2$	$2^{\circ}-40^{\prime}$	1.529	20.576	$12^{\circ}-00^{\prime}$. 02185	20791
49	$3^{\circ}-00^{\prime}$	2.128	23.070	$15^{\circ}-00^{\prime}$. 03407	25882
$441 / 2$	$3^{\circ}-20^{\prime}$	2.870	25.550	$18^{\circ}-20^{\prime}$. 05076	. 31454
$401 / 2$	$3^{\circ}-40^{\prime}$	3.763	27.983	$22^{\circ}-00^{\prime}$. 07282	. 37461

SWITCH EASEMENT S 2½-100

Rad.	Angle	X	Y	S ${ }^{\circ}$	Ease-
1021/3	$6^{\circ}-30^{\prime}$	0.658	11.584	$6^{\circ}-30^{\prime}$	O G equal to
$561 / 2$	$5^{\circ}-30^{\prime}$	1.529	16.936	$12^{\circ}-00^{\prime}$	and a G S
49	$3^{\circ}-00^{\prime}$	2.128	19.430	$15^{\circ}-00^{\prime}$	3.640 less tha
$441 / 2$	$3^{\circ}-20^{\prime}$	2.870	21.910	$18^{\circ}-20^{\prime}$	
$401 / 2$	$3^{\circ}-40^{\prime}$	3.763	24.343	$22^{\circ}-00^{\prime}$	Spiral No. $2 \frac{1}{2}$.

SWITCH EASEMENT S 2½-200

Rad.	Angle	x	Y	S ${ }^{\circ}$	
200	$4^{\circ}-00^{\prime}$	0.487	13.951	$4^{\circ}-00^{\prime}$	ment gives an
129	$1^{\circ}-00^{\prime}$	0.664	16.196	$5^{\circ}-00^{\prime}$	O G 0.250
74	$2^{\circ}-00^{\prime}$	0.934	18.764	$7{ }^{\circ}-00^{\prime}$	greater and
$631 / 2$	$2^{\circ}-20^{\prime}$	1.301	21.324	$9^{\circ}-20^{\prime}$	$\mathrm{G} \quad \mathrm{S} \quad 3.286$
$551 / 2$	$2^{\circ}-40^{\prime}$	1.779	23.862	$12^{\circ}-00^{\prime}$	
49	$3^{\circ}-00^{\prime}$ $3^{\circ}-20^{\prime}$	2.378	26.356	$15^{\circ}-00^{\prime}$	greater than
$441 / 2$ $401 / 2$	$3^{\circ}-20^{\prime}$ $3^{\circ}-40^{\prime}$	3.120 4.013	28.836 31.269	$18^{\circ}-20^{\prime}$ $22^{\circ}-00^{\prime}$	Spiral No. $2 \frac{1}{2}$.

SPIRAL No. 3

Rad.	Angle	X	Y	S°	Versine	Sine
300		0.046	5.236	$1^{\circ}-00^{\prime}$.00015	
	$2^{\circ}-00^{\prime}$	0.229	10.468	$3^{\circ}-00^{\prime}$.00137	.01745
100	$3^{\circ}-00^{\prime}$	0.639	15.688	$6^{\circ}-00^{\prime}$.00548	.10453
75	$4^{\circ}-00^{\prime}$	1.368	20.871	$10^{\circ}-00^{\prime}$.01519	.17365
60	$5^{\circ}-00^{\prime}$	2.501	25.982	$15^{\circ}-00^{\prime}$.03407	.25882
50	$6^{\circ}-00^{\prime}$	4.118	30.959	$21^{\circ}-00^{\prime}$.06642	.35837
40	$7^{\circ}-00^{\prime}$	6.143	35.403	$28^{\circ}-00^{\prime}$.11705	.46947

SWITCH EASEMENT S 3-100

Rad.	Angle	X	Y	S ${ }^{\circ}$	e-
1021/3	$6^{\circ}-30^{\prime}$	0.658	11.584	$6^{\circ}-30^{\prime}$	ment gives an
81	$3^{\circ}-30^{\prime}$	1.368	16.480	$10^{\circ}-00^{\prime}$	and a G S
60	$5{ }^{\circ}-00^{\prime}$	2.501	21.591	$15^{\circ}-00^{\prime}$	4.391 less than
50	$6^{\circ}-00^{\prime}$	4.118	26.568	$21^{\circ}-00^{\prime}$	Spiral No. 3.
40	$7^{\circ}-00^{\prime}$	6.143	31.012	$28^{\circ}-00^{\prime}$	Spiral No. 3.

SWITCH EASEMENT S 3-200

Rad.	Angle	x	Y	5°	This Ease-
200	$4^{\circ}-00^{\prime}$	0.487	13.951	$4^{\circ}-00^{\prime}$	ment gives an
132	$2^{\circ}-00^{\prime}$	0.889	18.541	$6^{\circ}-00^{\prime}$	
75	$4^{\circ}-00^{\prime}$	1.618	23.724	$10^{\circ}-00^{\prime}$	Greater and a
60	$5^{\circ}-00^{\prime}$	2.751	28.835	$15^{\circ}-00^{\prime}$	greater than
50	$6^{\circ}-00^{\prime}$	4.368	33.812	$21^{\circ}-00^{\prime}$	Spiral No. 3.
40	$7^{\circ}-00^{\prime}$	6.393	38.256	$28^{\circ}-00^{\prime}$	Spiral No. 3.

SPIRAL No. 4

Rad.	Angle	X	Y	S°	Versine	Sine
420	$0^{\circ}-42^{\prime}$	0.031	5.131	$0^{\circ}-42^{\prime}$.00007	.01222
210	$1^{\circ}-24^{\prime}$	0.157	10.261	$2^{\circ}-06^{\prime}$.00067	.03664
140	$2^{\circ}-06^{\prime}$	0.439	15.384	$4^{\circ}-12^{\prime}$.00269	.07324
105	$2^{\circ}-48^{\prime}$	0.939	20.490	$7^{\circ}-00^{\prime}$.00745	.12187
84	$3^{\circ}-30^{\prime}$	1.720	25.561	$10^{\circ}-30^{\prime}$.01675	.18224
70	$4^{\circ}-12^{\prime}$	2.839	30.567	$14^{\circ}-42^{\prime}$.03273	.25376
60	$4^{\circ}-54^{\prime}$	4.352	35.469	$19^{\circ}-36^{\prime}$.05794	.33545

SWITCH EASEMENT S 4-200

Rad.	Angle	x	Y	So	This Easement gives an O G 0.178 greater and a G S equal to Spiral No. 4.
200	$4^{\circ}-00^{\prime}$	0.487	13.951	$4^{\circ}-00{ }^{\prime}$	
1251/2	$3^{\circ}-00^{\prime}$	1.117	20.490	$7^{\circ}-00^{\prime}$	
84	$3^{\circ}-30^{\prime}$	1.898	25.561	$10^{\circ}-30^{\prime}$	
70 60	$4^{\circ}-12^{\prime}$ $4^{\circ}-54^{\prime}$	3.017 4.530	30.567 35.469	$14^{\circ}-42^{\prime}$ $19^{\circ}-36^{\prime}$	

SPIRAL No. 5

Rad.	Angle	X	Y	S°	Versine	Sine
600	$0^{\circ}-30^{\prime}$	0.023	5.236	$0^{\circ}-30^{\prime}$.00004	
300	$1^{\circ}-00^{\prime}$	0.114	10.471	$1^{\circ}-30^{\prime}$.00034	.02678
200	$1^{\circ}-30^{\prime}$	0.320	15.703	$3^{\circ}-00^{\prime}$.00137	.05618
150	$2^{\circ}-00^{\prime}$	0.685	20.926	$5^{\circ}-00^{\prime}$.00381	.082346
120	$2^{\circ}-30^{\prime}$	1.255	26.130	$7^{\circ}-30^{\prime}$.00856	.13053
100	$3^{\circ}-00^{\prime}$	2.073	31.302	$10^{\circ}-30^{\prime}$.01675	.18224
85	$3^{\circ}-30^{\prime}$	3.175	36.374	$14^{\circ}-00^{\prime}$.02970	.24192

SWITCH EASEMENT S 5-200

Rad.	Angle	X	Y	S°	This Ease-
200	$4^{\circ}-00^{\prime}$	0.487	13.951	$4^{\circ}-00^{\prime}$	ment gives an
144	$1^{\circ}-00^{\prime}$	0.685	16.458	$5^{\circ}-00^{\prime}$	$\bigcirc \mathrm{G}$ equal to
120	$2^{\circ}-30^{\prime}$	1.255	21.662	$7{ }^{7}-30^{\prime}$	and 4.468 less than
100	$3^{\circ}-00^{\prime}$	2.073	26.834	$10^{\circ}-30^{\prime}$	4.468 less than
85	$3^{\circ}-30^{\prime}$	3.175	31.906	$14^{\circ}-00^{\prime}$	Spiral No. 0.

SPIRAL No. 6

Rad.	Angle	x	Y	So	Versine	Sine
900	$0^{\circ}-20^{\prime}$	0.015	5.236	$0^{\circ}-20^{\prime}$. 00002	. 00582
450	$0^{\circ}-40^{\prime}$	0.076	10.472	$1^{\circ}-00^{\prime}$. 00015	. 01745
300	$1^{\circ}-00^{\prime}$	0.213	15.706	$2^{\circ}-00^{\prime}$. 00061	. 03490
225	$1^{\circ}-20^{\prime}$	0.457	20.936	$3^{\circ}-20^{\prime}$. 00169	. 05814
180	$1^{\circ}-40^{\prime}$	0.837	26.158	$5^{\circ}-00^{\prime}$. 00381	. 08716
150	$2^{\circ}-00^{\prime}$	1.385	31.365	$7^{\circ}-00^{\prime}$. 00745	. 12187
128	$2^{\circ}-20^{\prime}$	2.125	36.524	$9^{\circ}-20^{\prime}$. 01324	. 16218

SWITCH EASEMENT S 6-200

Rad.	Angle	x	Y	So	This Ease ment gives an O G equal to and a G S 7.770 less than Spiral No. 6.
200	$4^{\circ}-00^{\prime}$	0.487	13.951	$4^{\circ}-00^{\prime}$	
255	$1^{\circ}-00^{\prime}$	0.837	18.388	$5^{\circ}-00^{\prime}$	
150	$2^{\circ}-00^{\prime}$	1.385	23.595	$7^{\circ}-00^{\prime}$	
128	$2^{\circ}-20^{\prime}$	2.125	28.754	$9^{\circ}-20^{\prime}$	

SPIRAL No. 7

Rad.	Angle	X	Y	S°	Versine	Sine
1260	$0^{\circ}-15^{\prime}$	0.012	5.498	$0^{\circ}-15^{\prime}$.00001	.00436
630	$0^{\circ}-30^{\prime}$	0.060	10.995	$0^{\circ}-45^{\prime}$.00009	.01309
420	$0^{\circ}-45^{\prime}$	0.168	16.492	$1^{\circ}-30^{\prime}$.00034	.02618
315	$1^{\circ}-00^{\prime}$	0.360	21.987	$2^{\circ}-30^{\prime}$.00095	.04362
252	$1^{\circ}-15^{\prime}$	0.660	27.475	$3^{\circ}-45^{\prime}$.00214	.06540
210	$1^{\circ}-30^{\prime}$	1.091	32.957	$5^{\circ}-15^{\prime}$.00420	.09150
180	$1^{\circ}-45^{\prime}$	1.678	38.424	$\gamma^{\circ}-00^{\prime}$.00745	.12187
157						

SPIRAL No. 8

Rad.	Angle	X	Y	S°	Versine	Sine
1890	$0^{\circ}-10^{\prime}$	0.008	5.498	$0^{\circ}-10^{\prime}$.00000	.00291
945	$0^{\circ}-20^{\prime}$	0.040	10.996	$0^{\circ}-30^{\prime}$.00004	.00873
630	$0^{\circ}-30^{\prime}$	0.112	16.493	$1^{\circ}{ }^{\circ} 00^{\prime}$.00015	.01745
$4721 / 2$	$0^{\circ}-40^{\prime}$	0.241	21.990	$1^{\circ}-40^{\prime}$.00042	.02908
378	$0^{\circ}-50^{\prime}$	0.441	27.483	$2^{\circ}-30^{\prime}$.00095	.04362
315	$1^{\circ}-00^{\prime}$	0.729	32.973	$3^{\circ}-30^{\prime}$.00187	.06105
270	$1^{\circ}-10^{\prime}$	1.120	38.457	$4^{\circ}-40^{\prime}$.00332	.08136
236						

SPIRAL No. 9

Rad.	Angle	x	y	S $^{\circ}$	Versine	Sine
2730	$0^{\circ}-7^{\prime}$	0.006	5.559	$0^{\circ}-7^{\prime}$.00000	.00204
1365	$0^{\circ}-14^{\prime}$	0.028	11.118	$0^{\circ}-21^{\prime}$.00002	.00611
910	$0^{\circ}-21^{\prime}$	0.079	16.677	$0^{\circ}-42^{\prime}$.00007	.01222
$6821 / 2$	$0^{\circ}-28^{\prime}$	0.170	22.234	$1^{\circ}{ }^{\circ}-10^{\prime}$.00021	.02036
546	$0^{\circ}-35^{\prime}$	0.311	27.791	$1^{\circ}-45^{\prime}$.00047	.03054
455	$0^{\circ}-42^{\prime}$	0.515	33.346	$2^{\circ}-27^{\prime}$.00091	.04275
390	$0^{\circ}-49^{\prime}$	0.792	38.899	$3^{\circ}-16^{\prime}$.00162	.05698
341						

SPIRAL No. 10

Rad.	Angle	x	y	S°	Versine	Sine
3780	$0^{\circ}-05^{\prime}$		0.004	5.498	$0^{\circ}-05^{\prime}$.00000
1890	$0^{\circ}-10^{\prime}$	0.020	10.996	$0^{\circ}{ }^{\circ}-15^{\prime}$.00001	.00145
1260	$0^{\circ}-15^{\prime}$	0.056	16.493	$0^{\circ}{ }^{\circ}-30^{\prime}$.00004	.00876
945	$0^{\circ}-20^{\prime}$	0.120	21.991	$0^{\circ}-50^{\prime}$.00011	.01454
756	$0^{\circ}-25^{\prime}$	0.220	27.488	$1^{\circ}-15^{\prime}$.00024	.02181
630	$0^{\circ}-30^{\prime}$	0.364	32.983	$1^{\circ}-45^{\prime}$.00047	.03054
540	$0^{\circ}-35^{\prime}$	0.560	38.478	$2^{\circ}-20^{\prime}$.00083	.04071
472						

SPIRAL No. 11

Rad.	Angle	X	Y	S°	Versine	Sine
5250	$0^{\circ}-04^{\prime}$.0035	6.109	$0^{\circ}-04^{\prime}$.00000	.00116
2625	$0^{\circ}-08^{\prime}$.0178	12.217	$0^{\circ}-12^{\prime}$.00001	.00349
1750	$0^{\circ}-12^{\prime}$.0498	18.326	$0^{\circ}{ }^{\circ}-24^{\prime}$.00002	.00698
$13121 / 2$	$0^{\circ}-16^{\prime}$.1066	24.434	$0^{\circ}-40^{\prime}$.00007	.01164
1050	$0^{\circ}-20^{\prime}$.1955	30.542	$1^{\circ}-00^{\prime}$.00015	.01745
875	$0^{\circ}-24^{\prime}$.3234	36.649	$1^{\circ}-24^{\prime}$.00030	.02443
750	$0^{\circ}-28^{\prime}$.4975	42.756	$1^{\circ}-52^{\prime}$.00053	.03257
656						

SPIRAL No. 12

Rad.	Angle	X	Y	So	Versine	Sine
7140	$0^{\circ}-03^{\prime}$. 0027	6.231	$0^{\circ}-03^{\prime}$. 00000	. 00087
3570	$0^{\circ}-06^{\prime}$. 0136	12.462	$0^{\circ}-09^{\prime}$. 00000	. 00262
2380	$0^{\circ}-09^{\prime}$. 0381	18.692	$0^{\circ}-18^{\prime}$. 00001	. 00524
1785	$0^{\circ}-12^{\prime}$. 0816	24.923	$0^{\circ}-30^{\prime}$. 00004	. 00873
1428	$0^{\circ}-15^{\prime}$. 1495	31.153	$0^{\circ}-45^{\prime}$. 00009	. 01309
1190	$0^{\circ}-18^{\prime}$. 2474	37.384	$1^{\circ}-03^{\prime}$. 00017	. 01832
1020 892	$0^{\circ}-21^{\prime}$. 3806	43.613	$1^{\circ}-24^{\prime}$. 00030	.02443

Tables giving elements of SPIRALS
for
Inner Gage Line Lengths of Rails and

Tie Rod Spacing for

> Various Gages.

	${ }_{\text {Cont. }}^{\text {Cent. }}$	Angle	Inner Rail		so	${ }_{\substack{\text { Length } \\ \text { Outer }}}^{\text {L }}$	$\underbrace{\substack{\text { a }}}_{\substack{\text { Length } \\ \text { Inner }}}$	$\underset{\substack{\text { Correc. } \\ \text { tion Rair } \\ \text { T Rail }}}{\substack{\text { and }}}$	This Easement gives an
			x	y					
	75	$7^{\circ}-50^{\prime}$. 678	9.901	$7{ }^{\circ}-50^{\prime}$	10.576	9.932	. 012	O G equal to
6	451/3	$2^{\circ}-40^{\prime}$. 997	11.876	$10^{\circ}-30^{\prime}$	12.795	11.933	. 016	3.346 less than
7	421/2	$3^{\circ}-30^{\prime}$	1.517	14.272	$14^{\circ}-00^{\prime}$	15.535	14.385	. 022	Spiral No. 2.
8	$371 / 2$	$4^{\circ}-00^{\prime}$	2.194	16.630	$18^{\circ}-00^{\prime}$	18.318	16.838	. 028	

${ }_{\substack{\text { Point } \\ \text { No. }}}^{\text {d }}$	$\xrightarrow{\text { Cent. }}$ Rad.	Angle	Inner Rail			Versin			${ }_{\text {Length }}^{\text {Outer }}$		Length	$\begin{gathered} \text { Correcor } \\ \text { tion for } \\ \text { T Ratid } \end{gathered}$
			x	y								
$\begin{aligned} & 1 \\ & \frac{1}{2} \\ & \frac{3}{3} \\ & 4 \\ & \hline 6 \\ & 6 \\ & 7 \\ & \hline \\ & 10 \\ & 10 \end{aligned}$											$\begin{array}{ll} \hline 2.569 \\ \hline \end{array}$	0.00 0.000 0.003 0.008 0.008 0.01 0.015 0.015 0.012 0.025 0.025 0.025
TIE ROD DISTANCES FROM P. S.												
$\frac{\text { Inner }}{\text { Rai1 }}$	${ }_{\text {Outer }}^{\text {Rait }}$	Inner	${ }_{\text {Outer }}^{\substack{\text { Outid }}}$	Inner	$\underset{\substack{\text { Outer } \\ \text { Rail }}}{\text { are }}$	${ }_{\text {Inner }}^{\text {Rail }}$	Outer Rail			Outer Rail	Inner	${ }_{\text {Outer }}^{\text {Ouil }}$
$\begin{gathered} 1.00 \\ \text { and } \\ 2: 90 \\ 4.909 \end{gathered}$	$\begin{aligned} & 1.00 \\ & .0 .0 \\ & 0.00 \\ & 5.00 \end{aligned}$		$\begin{aligned} & 6.05 \\ & \hline 6.07 \\ & \hline, 0.01 \\ & 10.11 \end{aligned}$	10.85 11.82 18.76 18.73 18.72							$\begin{aligned} & 259.98 \\ & 27: 128 \end{aligned}$	cois

	今口 気烒 H			515 ¢0 ¢ 品	
	$\begin{aligned} & \text { I5 } \\ & \text { 80 } \\ & \text { dy } \\ & \text { H0 } \end{aligned}$	 जisicigi		5． 馬䔍 H0	
	is	 ©		is	
					$0^{\circ} 0^{\circ}{ }^{\circ}$ サirivenos
	$\begin{aligned} & \stackrel{0}{60} \\ & \stackrel{y}{4} \end{aligned}$	戸్లిల్రిరిడిస్ คp 		0 $\stackrel{0}{80}$ －	
		유우ㅇㅜㅕ웅			
		∞－0，		菬○	

Z			$\dot{\Omega}$	馬島	
		 		馬氮品	우우묘8．
		 			둥ํNㅇ
$\underset{\infty}{\infty}$	㟧	긍	$\dot{\sim}$	島न	
Ei	$\begin{aligned} & \stackrel{.}{n} \\ & \stackrel{H}{0} \\ & \stackrel{5}{5} \end{aligned}$				
$\begin{aligned} & \text { サ } \\ & \text { 区iv } \\ & \text { U } \\ & \text { U } \end{aligned}$		\％080\％\％		言氟品	
	is	－		枵：	が，\％e\％
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { Z } \\ & \text { a } \\ & \dot{\alpha} \\ & \underset{\sim}{\alpha} \end{aligned}$		 	Q 串	気：	玉야NNNㅇㅇ
		\％i\％quew 			
	范	 		戓気品品	－かoosin
				或髟	댱중ㅇㅇ영
	茄：				க毋ロ\％\％\％ ricios テir

SWITCH EASEMENT S 3-100

$\xrightarrow{\text { Point }}$ No.	$\underset{\substack{\text { Cent. } \\ \text { Rad. }}}{\text { a }}$	Angle	Inner Rail		so	${ }_{\text {L }}^{\text {Length }}$ Outer	${ }_{\substack{\text { Length } \\ \text { Inner }}}^{\substack{\text { den }}}$	$\begin{gathered} \text { Correc } \\ \text { tion } \\ \text { T Raid } \\ \text { Raid } \end{gathered}$	This Ease-
			x	y					
	200	$4^{\circ}-00^{\prime}$	0.481	13.787°	$4^{\circ}-00^{\prime}$	14.127	13.799	. 006	ment gives an
4	1251/2	$3^{\circ}-00^{\prime}$	1.099	20.203	$7{ }^{\circ}-00^{\prime}$	20.822	20.246	011	greater and
5	84	$3^{\circ}-30^{\prime}$	1.859	25.132	$10^{\circ}-30^{\prime}$	26.096	25.234	. 016	G S equal
6	70	$4^{\circ}-12^{\prime}$	2.940	29.970	14 ${ }^{\circ}-42^{\prime}$	31.400	30.192	. 023	Spiral No. 4.
7	60	$4^{\circ}-54^{\prime}$	4.394	34.679	$19^{\circ}-36^{\prime}$	36.733	35.123	. 031	

SWITCH EASEMENT

$\xrightarrow{\text { Point }}$ No.	${ }_{\substack{\text { cent. } \\ \text { Rad. }}}$	Angle	Inner Rail		so	$\underset{\substack{\text { Length } \\ \text { Outer }}}{\text { den }}$		$\begin{gathered} \text { Correc. } \\ \text { Tion } \\ \hline \text { Tor } \\ \hline \text { Rair } \end{gathered}$	This Ease-
			x	y					
	200	$4^{\circ}-00^{\prime}$	0.481	13.787	$4^{\circ}-00^{\circ}$	14.127	13.799	. 006	ment gives an
4	144	$1^{\circ}-00^{\prime}$	0.676	16.253	$5{ }^{\circ}-00$	16.681	16.271	. 008	and a G S
5	120	$2^{\circ}-30^{\prime}$	1.235	21.355	$7^{\circ}-30^{\prime}$	22.020	21.404	. 012	4.468 less than
6	100	$3^{\circ}-00^{\prime}$	2.034	26.405	$10^{\circ}-30^{\prime}$	27.379	26.517	. 016	Spiral No. 5
7	85	$3^{\circ}-30^{\prime}$	3.105	31.337	$14^{\circ}-00^{\prime}$	32.715	31.565	. 022	

$\xrightarrow{\text { Point }}$ No.	Cent.	Angle	Inner Rail		so	$\underset{\substack{\text { Length } \\ \text { Outer }}}{ }$	Length	$\begin{gathered} \text { Correcor } \\ \text { citor } \\ \hline \text { Ton Rair } \end{gathered}$	This Ease ment gives an
			x	y					
	200	$4^{\circ}-00^{\prime}$	0.481	13.787	$4^{\circ}-00^{\prime}$	14.127	13.799	. 006	O G equal
5	255	$1^{\circ}-00^{\prime}$	0.828	18.183	$5^{\circ}-00^{\prime}$	18.618	18.208	. 008	and a G S
6	150	$2^{\circ}-00^{\prime}$	1.367	23.308	$7^{\circ}-00^{\prime}$	23.937	23.361	. 011	7.7701ess than Spiral No. 6.
7	128	$2^{\circ}-20^{\prime}$	2.094	28.372	$9^{\circ}-20^{\prime}$	29.245	28.479	. 015	

SWITCH EASEMENT S 2-75. GAGE, 5 FT.

$\xrightarrow{\text { Point }}$ No.	${ }_{\substack{\text { cent } \\ \text { Rast }}}^{\text {cen }}$	Angle	Inner Rail		so	$\xrightarrow{\text { Iongth }}$			$\begin{gathered} \text { This Ease- } \\ \text { ment gives an } \end{gathered}$
			x	v					
	${ }^{75}$	$7^{\circ}-50$	677	9.881	$7^{\circ}-50^{\circ}$	10.596	9.912	. 012	$\bigcirc \mathrm{O}$ equal to
6	451/3	$2^{\circ}-40^{\prime}$. 994	11.849	$10^{\circ}-30^{\circ}$	12.823	11.906	. 016	and a G S 3.36 lessthan
7	421/2	$3^{\circ}-30^{\prime}$	1.513	14.238	$14^{\circ}-00$	15.571	14.349	023	Spiral No. 2.
8	371/2	$4{ }^{-00}$	2.187	16.584	18-00	18.363	16.793	028	

SPIRAL

Point No．	Cent． Rad．	Angle	Inner Rail		\mathbf{S}°	Versine	Sine	Length Outer	Length Inner	Correc－ tion for T Rail
			X	Y						
1	444	$0^{\circ}-20^{\prime}$	． 007	2.568	$0^{\circ}-20^{\prime}$	． 00002	． 00582	2.598	2.568	0.000
2	228	$0^{\circ}-40^{\prime}$	． 038	5.122	$1^{\circ}-00^{\prime}$	． 00015	． 01745	5.210	5.122	0.002
3	148	$1^{10}-00^{\prime}$	0.103	7.661	$2^{\circ}-00^{\prime}$	． 00061	． 03490	7.836	7.662	0.008
4	111	$1^{\circ}-20^{\prime}$	0.222	10.183	$30-20{ }^{\prime}$	． 00169	． 05814	10.477	10.187	0.005
5	89	$1^{\circ}-40^{\prime}$	0.404	12.692	$5^{\circ}-00^{\prime}$	． 00381	． 08716	13.139	12.703	0.008
6	74	$2^{\circ}-00^{\prime}$	0.665	15.173	$7^{\circ}-00^{\prime}$	． 00745	． 12187	15.809	15.199	0.011
7	$631 / 2$	$2^{\circ}-20^{\prime}$	1.018	17.633	9${ }^{9}-20^{\prime}$	． 01324	． 16218	18.497	17.683	0.015
8	$55^{1 / 2}$	$3^{\circ}-40^{\prime}$	1.474	20.056	$12^{\circ}-00^{\prime}$	． 02185	． 20791	21.197	20.149	0.019
9 10	49	$3^{\circ}-00^{\prime}$ $3^{\circ}-20^{\prime}$	2.043 2.743	22.423 24.764	$15^{\circ}-00^{\prime}$ 180.20^{\prime}	． 03407	． 25882	23.898	22.585	0.024
11	$441 / 2$ $401 / 2$	$3 \circ-20^{\prime}$ $30-40^{\prime}$	2.743 3.581	24.764 27.046	$18^{\circ}-20^{\prime}$ $22^{\circ}-00^{\prime}$	． 05076	． 31454	26.628	25.028	0.029
	40／2	$3-40$	3.581	27.046	$22^{\circ}-00^{\prime}$	． 07282	． 37461	29.380	27.460	0.035

TIE ROD DISTANCES FROM P．S．

	5080 ต่ Nั
	유귱 ลั®
¢	낭ํㅇㅇㅇ옹
馬気	
岢：	ஸ추뮤ํ
岗：न	風完家
岕：	
易：	
	あ゙ஜூகロロ $1 \omega^{\circ} \dot{0}$
	858ㅇㅇㅇ －iくッテレ・
	88க毋\％ －iテicion

SWITCH EASEMENT S 2½-100.

	Cent. Rad.	Angle	Inner Rail		so	Versine	Sine		${ }_{\substack{\text { Length } \\ \text { Outer }}}$		Length	
			x	Y								
$\begin{aligned} & 0 \\ & \frac{1}{6} \\ & 6 \\ & 7 \end{aligned}$												$\begin{aligned} & .002 \\ & .005 \\ & .009 \\ & .0 .096 \\ & .0 .035 \\ & .034 \\ & .044 \end{aligned}$
TIE ROD DISTANCES FROM P. S.												
${ }_{\text {Inner }}^{\text {Rail }}$	$\xrightarrow{\text { Outer }}$ Rail	${ }_{\text {Inner }}^{\text {Inail }}$	$\begin{array}{c}\text { Outer } \\ \text { Rail }\end{array}$	${ }_{\substack{\text { Inner } \\ \text { Raii }}}$	$\xrightarrow{\substack{\text { unter } \\ \text { Rail }}}$	$\xrightarrow{\text { Inner }}$ Rail	($\begin{gathered}\text { Outer } \\ \text { Rail }\end{gathered}$	${ }_{\text {Inn }}^{\text {Ina }}$		Outer	Inner Rail	Outer Rail
			$\begin{array}{\|c} 7.07 \\ .09 \\ \text { o.11 } \\ \text { 10.12 } \\ 12.17 \\ 12.17 \end{array}$	$\begin{aligned} & 12.81 \\ & \hline 1.88 \\ & 14.76 \\ & 11.78 \\ & 16.70 \\ & 17.68 \\ & 17.68 \end{aligned}$	$\begin{aligned} & 13.19 \\ & 14.92 \\ & 15.24 \\ & 17.20 \\ & 17.30 \\ & 18.34 \end{aligned}$							

${ }_{\substack{\text { Point } \\ \text { No. }}}^{\text {Pr }}$	Cent. Rad.	An	Inner Rail		so	Length Outer Oter	${ }_{\substack{\text { Length } \\ \text { Inner }}}^{\text {cter }}$		This Easement gives an
			x	y					
	102	6°	0.642	11.301	$6^{\circ}-30^{\prime}$	11.893	11.325	. 010	O G equal to
4	${ }_{8}^{81}$		${ }^{1.330}$	${ }_{26}^{16.046}$	${ }^{10^{\circ}-00}$	${ }^{16.993}$	${ }^{16.121}$. 016	and a G S
5	60 50	5000	2.416	${ }^{20.944}$	$15^{10^{\circ}}$	${ }_{\text {2. }}^{2.447}$	${ }^{21.139}$. 024	4.391 les
${ }_{7}^{6}$		$7^{6}{ }^{\circ}-000^{\circ}$	${ }^{3} .850$	${ }_{29}^{25.638}$		27.945 33.138	${ }_{30}^{26.113}$. 044	Spiral No. 3.
		IT	EA	M	T S	200.	GA	5	
Point		Angle		Rail		Length	¢ng		This
			x	Y			Innes	TR	ent gives an
	200		0.481	13.777	$4^{\circ}-00$	14.138		. 006	O G 0.250
3 4	${ }_{75}^{132}$		0.875 1.580	lis ${ }_{23}^{18.280}$		${ }_{24.242}^{18.832}$	${ }^{18.388}{ }_{23}^{1830}$. 016	greater and a G S 2.853
5	60	$5^{\circ}{ }^{\circ}-00^{\prime}$	${ }_{2} .666$	${ }_{28.188}$	${ }^{15}{ }^{\circ}-00^{\prime}$	${ }_{29.696}^{29}$	${ }_{28.388}^{288}$. 024	greater than
${ }_{7}^{6}$	50 40	$6^{6}{ }^{\circ}-000^{\prime}$	${ }_{6}^{4.202}$	${ }^{33.916}$	${ }^{211^{\circ}-00^{\prime}}$	35.198	33.362	. 033	Spiral No. 3.
	40	$7^{\circ}-00$	6.100	37.082	$28^{\circ}-00^{\prime}$	40.387	37.943	. 044	

SWITCH EASEMENT S 4-200. GAGE, 5 FT.

$\begin{aligned} & \text { Point } \\ & \text { No. } \end{aligned}$	Cent.Rad.	Angle	Inner Rail		So	$\underset{\substack{\text { Length } \\ \text { Outer }}}{\substack{\text { nen }}}$	$\begin{aligned} & \text { Length } \\ & \text { Inner } \end{aligned}$	Correc- T Rail	This Easement gives an
			x	Y					
	200	$4^{\circ}-00^{\prime}$	0.481	13.777	$4^{\circ}-00^{\prime}$	14.138	13.788	. 006	O G 0.178
4	1251/2	$3^{\circ}-00^{\prime}$	1.098	20.185	$7{ }^{\circ}-00^{\prime}$	20.839	20.229	. 011	greater an
5	84	$3^{\circ}-30^{\prime}$	1.856	25.105	$10^{\circ}-30^{\prime}$	26.123	25.207	. 016	to Spiral No.
6	70	$4^{\circ}-12^{\prime}$	2.935	29.933	$14^{\circ}-42^{\prime}$	31.437	30.155	. 023	
7	60	$4^{\circ}-54^{\prime}$	4.385	34.630	$19^{\circ}-36^{\prime}$	36.783	35.073	. 031	

SWITCH EASEMENT S 5-200. GAGE, 5 FT.

$\begin{gathered} \text { Point } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Cent. } \\ & \text { Rad. } \end{aligned}$	Angle	Inner Rail		So	$\begin{aligned} & \text { Length } \\ & \text { Outer } \end{aligned}$	$\underset{\substack{\text { Length } \\ \text { Inner }}}{ }$	$\begin{aligned} & \text { Correc- } \\ & \text { tion for } \\ & \text { T Rail } \end{aligned}$	This Ease-
			x	Y					
	200	$4^{\circ}-00^{\prime}$	0.481	13.777	$4^{\circ}-00^{\prime}$	14.138	13.788	. 006	O G equal to
4	144	$1^{\circ}-00^{\prime}$	0.675	16.240	$5{ }^{\circ}-00$	16.694	16.258	. 008	and a G S
5	120	$2{ }^{\circ}-30^{\prime}$	1.234	21.336	$7{ }^{\circ}-30^{\prime}$	22.039	21.385	. 012	
6	100	$3^{\circ}-00^{\prime}$	2.031	26.378	$10^{\circ}-30^{\prime}$	27.406	26.490	. 016	
7	85	$3^{\circ}-30^{\prime}$	3.101	31.301	$14^{\circ}-00^{\prime}$	32.751	31.529	. 022	

	$\underset{\text { Cent. }}{\text { Cond }}$	Angle	Inner Rail		so	${ }_{\substack{\text { Length } \\ \text { Outer }}}^{\text {Len }}$	Length	$\begin{array}{\|c} \text { Correc- } \\ \text { tion } \\ \text { tion } \\ \text { Rair } \end{array}$	This Easement gives an
			x	y					
	200	$4^{\circ}-00^{\prime}$	0.481	13.777	$4^{\circ}-00^{\prime}$	14.138	13.788	. 006	$O G$ equal
5	255	$1^{\circ}-00^{\prime}$	0.828	18.170	$5^{\circ}-00^{\prime}$	18.631	18.195	. 008	7.770 less tha
6	150	$2^{\circ}-00^{\prime}$	1.366	23.290	$7^{\circ}-00^{\prime}$	23.954	23.344	. 011	Spiral No. 6.
7	128	$2^{\circ}-20^{\prime}$	2.092	28.349	$9^{\circ}-20^{\prime}$	29.269	28.455	. 015	

$\xrightarrow[\substack{\text { Point } \\ \text { No. }}]{\text { coser }}$	${ }_{\text {Cont }}^{\text {Cent. }}$ Rad.	Angle	Inner Rail		so	$\underbrace{}_{\substack{\text { Length } \\ \text { Outer }}}$	${ }_{\substack{\text { Length } \\ \text { Inner }}}^{\substack{\text { der }}}$	$\begin{gathered} \text { Correc } \\ \text { Cor } \\ \text { Ton } \\ \text { Taid } \end{gathered}$	This Easement gives an
			x	y					
	75	$7{ }^{\circ}-50^{\prime}$. 676	9.867	$7^{\circ}-50^{\prime}$	10.610	9.898	. 012	O G equal to
6	451/3	$2^{\circ}-40^{\prime}$. 992	11.830	$10^{\circ}-30^{\prime}$	12.841	11.887	. 016	3.346 less than
7	421/2	$3^{\circ}-30^{\prime}$	1.510	14.211	$14^{\circ}-00^{\prime}$	15.596	14.324	. 022	Spiral No. 2.
8	$371 / 2$	$4^{\circ}-00^{\prime}$	2.182	16.552	$18^{\circ}-00^{\prime}$	18.396	16.760	. 028	

	$\underset{\substack{\text { Cent. } \\ \text { Rad. }}}{\text { cher }}$	Angle	Inner Rail		so	Versine	Sin	Length		${ }_{\text {L }}^{\substack{\text { Length } \\ \text { Iner }}}$	
			x	Y							
1 $\frac{1}{2}$ 8 4 $\frac{4}{6}$ $\frac{7}{7}$ 8 10 10 10											0.000 0.003 0.003 0.005 0.001 0.015 0.015 0.019 0.024 0.029 0.025 0.035
TIE ROD DISTANCES FROM P. S.											
${ }_{\substack{\text { Inner } \\ \text { Rail }}}^{\text {In }}$	${ }_{\text {Onter }}^{\substack{\text { Outer } \\ \text { Rail }}}$	${ }_{\text {Inner }}^{\text {Rail }}$	${ }_{\substack{\text { Outer } \\ \text { Rail }}}^{\text {den }}$	${ }_{\text {Inner }}^{\text {Rail }}$	$\underset{\substack{\text { Outer } \\ \text { Rail }}}{\text { ar }}$	${ }_{\text {Rail }}^{\text {Inner }}$	(outer	${ }_{\text {Inner }}$	er $\begin{aligned} & \text { Outer } \\ & \text { Rail } \\ & \text { Rail }\end{aligned}$	${ }_{\substack{\text { Inner } \\ \text { Rail }}}^{\text {arem }}$	${ }_{\substack{\text { Outer } \\ \text { Rail }}}$
$\begin{aligned} & 1.99 \\ & \begin{array}{l} 1: 99 \\ 4.929 \\ 4.96 \end{array} \end{aligned}$				$\begin{aligned} & 10.88 \\ & 11.80 \\ & 12.80 \\ & 18.78 \\ & 14.70 \end{aligned}$	$\begin{aligned} & 11.120 \\ & 1292020 \\ & 15.250 \\ & 15.250 \end{aligned}$	$\begin{gathered} 15.66 \\ 10.68 \\ \text { and } \\ 19.49 \end{gathered}$				$\begin{aligned} & 25.16 \\ & \hline 20: 109 \end{aligned}$	

SWITCH EASEMENT S 2½-100.

GAGE. 5 FT. $2^{1 ⁄ 2}$ IN.

Point	${ }_{\substack{\text { cont } \\ \text { Rad }}}$	Anglo	Imper Rail		so	$\xrightarrow{\text { Longtr }}$ Onter			This Ease-
			x						
	200	$4^{\circ}-00^{\prime}$	0.481	13.769	$4^{8}-00^{\prime}$	14.145	13.781	. 008	ment gives an O G 0.178
4	1251/2	$3^{3}-00^{\circ}$	1.0	20.173	$r^{\circ}-00$	20.852	20.216	. 011	grea
5	84	${ }^{3}-30^{\circ}$	1.	25.086	10	26.142	25.188	. 016	Spira
6	70	$4^{0}-12^{\prime}$	2.932	29.908	14-42 ${ }^{2}$	31.464	30.128	. 023	Spiral No
	60	40-54'	4.379	34.595	19 -36 ${ }^{\circ}$	36.819	35.037	. 031	

SWITCH EASEMENT S $5-200$. GAGE. 5 FT. 2 $2 / 2$ IN.

Point No.	Cent. Rad.	Angle	Inner Rail		S°	Length Outer	Length Inner	Correction for T Rail	This Easement gives an
			X	Y					
	200	$4^{\circ}-00^{\prime}$	0.481	13.769	$4^{\circ}-00^{\prime}$	14.145	13.781	. 006	O G equal
4	144	$11^{\circ}-00^{\prime}$	0.675	16.231	$5^{\circ}-00^{\prime}$	16.703	16.249	. 008	and a G
5	120	$2^{\circ}-30^{\prime}$	1.233	21.322	$7{ }^{\circ}-30^{\prime}$	22.053	21.371	. 012	4.468 less than
6	100	$3^{\circ}-00^{\prime}$	2.029	26.360	$10^{\circ}-30^{\prime}$	27.425	26.471	. 016	
7	85	$3^{\circ}-30^{\prime}$	3.098	31.276	$14^{\circ}-00^{\prime}$	32.776	31.504	. 022	

GAGE. 5 FT. $21 / 2 \mathrm{IN}$.

Point No.	Cent. Rad.	Angle	Inner Rail		S ${ }^{\circ}$	Length Outer	Length Inner	Correction for T Rail	This Easement gives an
			X	Y					
	200	$4^{\circ}-00^{\prime}$	0.481	13.769	$4^{\circ}-00^{\prime}$	14.145	13.781	. 006	G equal to
5	255	$1^{\circ}-00^{\prime}$	0.827	18.161	$5^{\circ}-00^{\prime}$	18.640	18.186	. 008	7.770 less than
6	150	$2^{\circ}-00^{\prime}$	1.366	23.278	$7^{\circ}-00^{\prime}$	23.967	23.331	. 011	Spiral No. 6.
7	128	$2^{\circ}-20^{\prime}$	2.091	28.332	$9^{\circ}-20^{\prime}$	29.286	28.438	. 015	

SWITCH EASEMENT S 2-75.

PointNo.	Cent.Rad.	Angle	Inner Rail		So	$\begin{aligned} & \text { Length } \\ & \text { Outer } \end{aligned}$	$\begin{aligned} & \text { Length } \\ & \text { Inner } \end{aligned}$	$\begin{aligned} & \text { Correc- } \\ & \text { tion for } \\ & \text { T Rair } \end{aligned}$	
			x	Y					
	75	$7{ }^{\circ}-50^{\prime}$. 675	9.856	$7{ }^{\circ}-50^{\prime}$	10.621	9.887	. 012	G equal to
6	451/3	$2{ }^{\circ}-40^{\prime}$. 991	11.815	$10^{\circ}-30^{\prime}$	12.857	11.871	. 016	
7	421/2	$3^{\circ}-30^{\prime}$	1.507	14.191	$14^{\circ}-00^{\prime}$	15.617	14.303	. 022	Spiral No. 2.
8	$371 / 2$	$4^{\circ}-00^{\prime}$	2.177	16.526	$18^{\circ}-00^{\prime}$	18.422	16.734	. 028	

SWTTCE EASEMENT					$21 / 2-100$		AGE, 5 FT		$41 / 2$ N.
Point No.	Cent. Rad.	Angle	Inner Rail		S°	Length Outer	Length Inner	Correction for T Rail	This Easement gives an O G equal to and a G S 3.640 less than Spiral No. $21 / 2$.
			X	Y					
$\begin{array}{r} 8 \\ 9 \\ 10 \\ 11 \end{array}$	1021/3	$6^{\circ}-30^{\prime}$	0.641	11.280	$6^{\circ}-30^{\prime}$	11.914	11.304	. 010	
	$561 / 2$	$5^{\circ}-30^{\prime}$	1.470	16.377	$12^{\circ}-00^{\prime}$	17.596	16.470	. 019	
	49	$3^{\circ}-00^{\prime}$	2.036	18.734	$15^{\circ}-00^{\prime}$	20.303	18.895	. 024	
	$441 / 2$	$3^{\circ}-20^{\prime}$	2.734	21.065	$18^{\circ}-20^{\prime}$	23.047	21.327	. 029	
	401/2	$3^{\circ}-40^{\prime}$	3.567	23.336	$22^{\circ}-00^{\prime}$	25.811	23.747	. 035	
SWTTCH EASEMENT					21/2-200. GAGE,			5 FT	$41 / 2$ IN.
Point No.	Cent. Rad.	Angle	Inner Rail		\mathbf{S}°	Length Outer	Length Inner	Correction for T Rail	This Easement gives an O G 0.250 greater and a G S 3.286 greater than Spiral No. $21 / 2$.
			X	Y					
	200	$4^{\circ}-00^{\prime}$	0.480	13.763	$4^{\circ}-00^{\prime}$	14.151	13.775	. 006	
5	129	$1^{\circ}-00^{\prime}$	0.654	15.962	$5^{\circ}-00^{\prime}$	16.449	15.979	. 008	
6	74	$2{ }^{\circ}-00^{\prime}$	0.914	18.436	$7^{\circ}-00^{\prime}$	19.125	18.469	. 011	
7	$631 / 2$	$20^{\circ}-20^{\prime}$	1.265	20.888	$9^{\circ}-20{ }^{\prime}$	21.821	20.945	. 014	
8	$551 / 2$	$2^{\circ}-40^{\prime}$	1.720	23.303	$12^{\circ}-00^{\prime}$	24.529	23.403	. 019	
9	49	$8{ }^{\circ}-00$	2.286	25.660	$15^{\circ}-00^{\prime}$	27.236	25.828	. 024	
10	441/2	$3{ }^{\circ}-20$	2.984	27.991	$18^{\circ}-20^{\prime}$	28.981	28.261	. 029	
11	401/2	$3^{\circ}-40^{\prime}$	3.817	30.262	$23^{\circ}-00^{\prime}$	32.745	30.681	. 035	

$\xrightarrow[\substack{\text { Point } \\ \text { No. }}]{\text { coser }}$	$\underset{\substack{\text { Cent. } \\ \text { Rad. }}}{ }$	Angle	Inner Rail		so	${ }_{\substack{\text { Length } \\ \text { Outer }}}^{\text {col }}$	${ }_{\substack{\text { Length } \\ \text { Inner }}}^{\substack{\text { a }}}$	$\begin{array}{\|l\|l\|} \substack{\text { toorrecer } \\ \text { toor } \\ \text { T Raii }} \end{array}$	This Ease-
			x	y					
	200	$4^{\circ}-00^{\prime}$	0.480	13.763	$4^{\circ}-00^{\prime}$	14.151	13.775	. 006	ment gives an $0 \quad \mathrm{G} 0.178$
4	1251/2	$3^{\circ}-00^{\prime}$	1.097	20.162	$7^{\circ}-00^{\prime}$	20.862	20.206	. 011	greater and
5	84	$3^{\circ}-30^{\prime}$	1.853	25.071	$10^{\circ}-30^{\prime}$	26.158	25.172	. 016	G S equal to
6	70	$4^{\circ}-12^{\prime}$	2.929	29.885	$14^{\circ}-42^{\prime}$	31.486	30.106	. 023	Spiral No. 4.
7	60	$4^{\circ}-54^{\prime}$	4.374	34.567	$19^{\circ}-36$	36.847	35.009	. 031	

Point	${ }_{\text {cont }}^{\text {Cent. }}$ Rad.	Angle	Inner Rail		so	${ }_{\substack{\text { Length } \\ \text { Outer }}}$	$\underbrace{\substack{\text { a }}}_{\substack{\text { Length } \\ \text { Inner }}}$		This Easement gives an
			x	y					
	200	$4^{\circ}-00^{\prime}$	0.480	13.763	$4^{\circ}-00^{\prime}$	14.151	13.775	. 006	O G equal to
4	144	$1^{\circ}-00^{\prime}$	0.675	16.224	$5{ }^{\circ}-00^{\prime}$	16.711	16.241	. 008	
5	120	$2^{\circ}-30^{\prime}$	1.232	21.311	$7^{\circ}-30^{\prime}$	22.064	21.360	. 012	than Spiral
6	100	$3^{\circ}-00^{\prime}$	2.028	26.344	$10^{\circ}-30^{\prime}$	27.441	26.455	. 016	No. 5.
7	85 -	$3^{\circ}-30^{\prime}$	3.095	31.256	$14^{\circ}-00^{\prime}$	32.797	31.483	. 022	

Point$\substack{\text { No. }}$Noser	Cent.Rad.	Angle	Inner Rail		So	Versine		Sine	$\underset{\substack{\text { Length } \\ \text { Outer }}}{ }$		$\underset{\substack{\text { Length } \\ \text { Inner }}}{\text { cel }}$	$\begin{aligned} & \text { Correc- } \\ & \text { tion for } \\ & \text { T Rail } \end{aligned}$
			X	Y								
1 2 3 4 4 5 8 7	$\begin{aligned} & 900 \\ & 450 \\ & 300 \\ & 1850 \\ & 180 \\ & 150 \\ & 1128 \\ & 1121 / 2 \end{aligned}$		0.015 0.076 0.071 0.452 0.85 1.827 1.365 2.089			.00002 .00015 .00011 .00391 .003745 .01324		$\begin{aligned} & .00182 \\ & .0745 \\ & .03590 \\ & .0814 \\ & .108187 \\ & .162187 \end{aligned}$.001 .000 .003 .005 .000 .011 .015
TIE ROD DISTANCES FROM P. S.												
$\begin{aligned} & \text { Inner } \\ & \text { Rail } \end{aligned}$	$\begin{aligned} & \text { Outer } \\ & \text { Raiil } \end{aligned}$	$\begin{aligned} & \text { Inner } \\ & \text { Rail } \end{aligned}$	$\begin{aligned} & \text { Outer } \\ & \text { Rai1 } \end{aligned}$	$\begin{aligned} & \text { Inner } \\ & \text { Rail } \end{aligned}$	$\begin{aligned} & \text { Outer } \\ & \text { Rail } \end{aligned}$	$\begin{aligned} & \text { Inner } \\ & \text { Rai1 } \end{aligned}$	$\begin{aligned} & \text { Outer } \\ & \text { Rail } \end{aligned}$		$\begin{aligned} & \text { Inner } \\ & \hline \text { Rail } \end{aligned}$	$\begin{aligned} & \text { Outer } \\ & \text { Rail } \end{aligned}$	Inner	Outer Rail
$\begin{aligned} & 1.00 \\ & \hline 1.99 \\ & \hline .99 \\ & \hline .99 \\ & \hline 5.99 \\ & 5.98 \end{aligned}$	1.00 1.00 2.01 3.01 4.01 5.01 6.01 602	(6.97	(${ }^{\text {7.03 }}$	(12.93	13.07 14.08 15.08 15.09 16.10 17.11 18.12	$\begin{aligned} & 18.87 \\ & 19.86 \\ & 20.84 \\ & 21.83 \\ & 22.81 \\ & 23.81 \\ & 23.80 \end{aligned}$	19.13 20.14 20.14 21.16 22.17 23.19 24.20		$\begin{aligned} & 24.78 \\ & 2.78 \\ & 26.72 \\ & 20.78 \\ & 28.71 \\ & 2.71 \end{aligned}$			

	WI	H	SEM	NT	6-200	GA	E, 5	FT. 4	IN.
Point No.	Cent. Rad.	Angle	Inner Rail		S°	Length Outer	Length Inner	Correction for T Rail	This Ease-
			X	Y					
	200	$4^{\circ}-00^{\prime}$	0.480	13.763	$4^{\circ}-00^{\prime}$	14.151	13.775	. 006	O G equal to
5	255	$1^{\circ}-00^{\prime}$	0.827	18.154	$5^{\circ}-00^{\prime}$	18.648	18.178	. 008	
6	150	$2{ }^{\circ}-00^{\prime}$	1.365	23.267	$7{ }^{\circ}-00^{\prime}$	23.977	23.321	. 011	Spiral No. 6.
7	128	$2^{\circ}-20^{\prime}$	2.089	28.319	$9^{\circ}-20^{\prime}$	29.300	28.424	. 015	

Middle Ordinates

for
10-Foot Chords.

Middle Ordinates， 10 Ft．Chords

м． 0.	dius	м．o．	adius	м．о．	Radius
0	infinity		150＇－		
	${ }^{4807^{\prime}-8{ }^{\prime \prime}}$	${ }^{11_{18}{ }^{18}}$	${ }^{1455^{\prime}} 14{ }^{6}$	$2{ }^{16}$	
${ }^{18}$	1600＇${ }^{10 \prime \prime}$		$133^{\prime \prime}-233^{\prime \prime}$ $133^{\prime \prime}-43^{\prime \prime}$	2 ${ }^{\frac{1}{4} 8^{\prime \prime}}$	
			${ }_{120}^{123}$		
尔＂	533＇－41／8＂	${ }_{\text {1 }}^{\text {告＂}}$	117＇－1／8＇${ }^{\prime \prime}$	$2_{\text {2a }}^{\text {a }}$	65^{\prime}
	$480{ }^{\circ}-$	$1{ }^{\text {5 }}$	114＇－	$2{ }^{\frac{5}{4} 0^{\prime \prime}}$	
彦＂		11新＂	${ }^{1111^{\prime}-}$		
	${ }^{369}{ }^{\prime}$	${ }^{13_{3} 8^{2}}$		2	
$\stackrel{\text { \％}}{18}$	342＇－10 ${ }^{\text {5 }}{ }^{\text {² }}$	${ }^{1+\frac{7}{18}}$	104＇－ 4 48＂	2 2\％＂	61＇
	$320^{\prime}-0$	$1{ }^{155^{\prime \prime}}$	102＇－2	${ }^{215^{2} \underline{5}^{\prime}}$	
	${ }^{300}{ }^{\prime}$		100＇－0		
			${ }_{96}{ }^{9}$－		
			94＇－ 2 $_{\text {樹＂}}{ }^{\prime \prime}$		57＇－11／4
	240		92^{\prime}－	258＂	57＇－3＂
	${ }^{228} 8^{\prime \prime}$	121	90＇－7	${ }^{2}$	
	209＇－		$8{ }^{1}$	2	
8	192		84－${ }^{\text {1／}}$	${ }^{2 \frac{3}{3} \frac{3}{2}^{\prime \prime}}$	
	184		82		
	171＇－51\％${ }^{1 / 2}$		80＇，01	2\％	
	165＇－635＂		788，93，	${ }_{2}^{2}$	
\％			76－314＂	2igi＂	1

Middle Ordinates， 10 Ft．Chords

м．о．	Radius	M．o．	Radius	м．о．	Radius
$3^{\prime \prime}$					
		${ }_{\text {4，}}^{4 \times 10}$			
31／4＂					
	47＇－77／${ }^{\prime \prime}$		36＇－		
	47＇－${ }^{\text {cin }}$		$35^{\circ}-11{ }^{\text {a }}$	－${ }_{\text {ckig }}$	
		${ }^{4} 4$	$\xrightarrow{35-8,}{ }^{3514}$		
$3^{\frac{3}{88}}$		$4{ }_{38}{ }^{\text {² }}$		$5{ }^{\text {ctig }}$	
	45^{\prime}	$4{ }^{5}$	34^{4}－	5_{5}^{5}	28
	44	${ }_{4}^{43}$		年产＂	
	44	${ }^{418}$			
${ }^{3}{ }^{\frac{1}{18}}$	43＇－ $9388^{\prime \prime}$	$4^{13^{\prime \prime}}$	33	$5_{18}{ }^{\frac{7}{4 \prime \prime}}$	
$3{ }^{35^{\text {ax }}}$	43＇－	4185＂	33＇	515\％	
	${ }_{42-1}^{43-0}$	${ }^{4}$	－$33-6$ $33-1$	512＂	
	42＇		33＇－ 0	\％．9\％	
${ }_{317}{ }^{1 / 4}$	41＇－101018		32		
	${ }^{411^{\prime}-63}$	458＂	33＇－	558＂	
	${ }^{41-10^{2} 8^{8}}$		－	¢	
	40＇－ $57 /{ }^{\prime \prime}$		31＇－11＋${ }^{\text {d }}$	5竦	
		${ }_{4}^{434^{2}}{ }^{\text {a }}$		${ }^{534^{\text {a }} \text {＂}}$	
		4iziv			
边	－${ }_{38}^{38-10}$	${ }^{475^{\prime \prime}}$	$\xrightarrow{30}{ }^{\circ}{ }^{\circ}-1$		
${ }^{3}$				5	
$3_{3}^{\text {a }}$	37＇－11／2＂	$4{ }^{\frac{1}{3} \bar{y}^{\prime \prime}}$	30＇－43＂		4

Wheel Contours

GREAT variety of wheel contours are used on street railways, and often the extremes are used on the same track system to the great detriment of both special work and wheels.

Since there are now no standard wheel contours except the M. C. B. (steam rai1road), it seems proper to offer some designs which will meet most of the difficulties found in our practice.

The contour of wheel fixes the character of the special work as to whether the frog work is to be "flange bearing." This term means that at the "waist of frog," i. e., just in advance of the point of frog, the floor of the throat is raised to carry the wheel through the waist and past the point upon its flange. The latter cannot be of a shape or character of metal well adapted to this service, and more or less chipped flanges are thereby caused. It is, however, inevitable that this support be provided,
unless the tread is wide enough to carry the wheel past this critical point.

Contour " A " is the M. C. B. standard wheel, and is adapted to open track and streets where rails with deep and wide flangeways are provided, and the paving is such that the tread will not be seriously chipped by contact with the same.

Contour " B " is a compromise wheel, for use where a portion of the track system is used by wheels having Contour " A " and the remainder has not the deep flangeway, but the width of flangeway is provided. If the paving conditions of this .portion are such that the width of tread must be reduced from that shown, all frog work on the entire portion of system used by Contour "B" must be made "flange bearing."

Contour " C " is adapted to track systems where wide and deep flangeways cannot be provided but the paving conditions are such that the width of the tread shown can be used.

Contour " D " is adapted to track systems where a narrower tread is required by
the paving conditions, the shape and size of flange being the same as "C." As wide a tread as possible should be used, as the life of special work will thereby be materially prolonged besides increasing the factor of safety on any open track in the system. "Flange-bearing" frogs will be required for this contour.

Contours "A" and, "C" will give the best results where conditions permit their use and do not require "flange-bearing" frogs.

Contour "B" will not give entire satisfaction, since the flange is not of the best shape, and should only be used when compelled by the conditions stated.

Contours "C" and "D" can be used on the same track system if "flange-bearing" frogs are provided for that portion on which Contour " D " is used.

Contours " C " and " D " cannot" be satisfactorily used on track systems designed for Contours "A" or "B," or vice versa.

Frog and Switch Department of The Pennsylvania Steel Company, Steelton, Pa.

Angles

Bulb

> Reinforcing
> Switch
Equal Legs
Unequal Legs

Braces
Acme
Switch
Guard
Interlocking
Tie Plate
Bridges
Buildings
Chairs
Rail chairs for steam railroads in paved streets

Channels

Circles

Turntables
Coal storage tracks

Clamps

Guard rail

Crossings

Bolted
Bolted Plate
Keyed
"Manard" Steel
Movable Point
Riveted
Street Railway
"Manard" Renewable Centre
Double Slip
Single Slip
Three Rail

Drop Forged Socket

Acme Brace

Manard Anvil Face Frog, Design 153

Manard Anvil Face Spring Rail Frog

Crossovers

Single Crossovers
Double Crossovers
Portable Crossovers

Forgings

Frogs, Rigid

Bolted
Bolted Plate
Keyed
"Manard" Steel
"Manard" Renewable Centre Riveted
Frogs, Spring
Bolted
Bolted Plate
Double
Hinged
Keyed
"Manard" Steel
Riveted Plate
Twin
Vaughan Hinged
Vaughan Sliding
Joints
Angle
Channel
Compromise
Deep Girder Rail
Plain
Knees
Mates.
Built
" Manard" Bolted
"Manard " Key Fast

Plates

. Frog
Slide
Switch

Tie
Rails, Guard

Manard Grooved Tongue Switch for Steam Railloads in Paved Streets

Rapid Renewable Manard Centre Frog

Rails

A. S. C. E. Sections

Cast Weld Compromise
Check
Flat
Girder
Girder Guard
Slot Rails and Conductor Bars
Tee
High Tee
Tram
Rails, Renewable Guard
Rods, Switch Connecting
Splice Bars
Spikes
Spiral Curves
Steam Railroad Track Equipment
Street Railway Special Work
Street Railway Track Fastenings
Steel
Bessemer
Billets
Blooms
Castings
Forgings
Flats
Basic Open Hearth Acid Open Hearth
"Manard "
Merchant
Round
Shapes
Slabs
Special
Square
Tool
Structural Steel

Standard Manard Big Pin Switch

92 THE PENNSYLVANIA STEEL COMPANY

Ground Lever, Model 16

Low New Century Adjustable Switch Stand Model 51 A

Intermediate Main Line Switch Stand Model 4; B

Switches

Adjustable
Angle
Challenge
Lorenz
"Manard" Big Pin Grooved Tongue
"Manard" Big Pin Tongue
"Manard" Steel Plain

Reinforced
Socket
Stub
Three Way

Switch Stands

Automatic
Banner
Steelton Detective
Ground Levers
Upright Levers
Long Safety
Main Line Adjustable
Positive
Automatic
Mine
Mine Kickover
New Century
New Century Adjustable
New Era
Pet
Semaphore with disappearing blade
Spring Ground Throw
Yard Stands
Tie Plates
Tie Rods
Track Bolts
Track Fastenings
Track Girders
Track Material of All Kinds
Trough Floors
Trough Sections
Viaducts
" Z" Bars

Chasmar-Winchell Press New York and Pittsburgh

3 mes

$$
\frac{8}{25}
$$

$$
\text { YA } 06881
$$

